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Modeling and mapping the climatic niches of forest tree species and projecting their potential shift in
geographic distribution under future climates are essential steps in assessing the impact of climate
change on forests and in developing adaptive forest management strategies. It is particularly important
for selecting suitable tree species to match future climates for afforestation and restoration of forest
ecosystems. Large scale afforestation and reforestation projects have occurred or planned in Asia-
Pacific region; however, the direct impact of climate change has not been widely considered. This has
been at least partially due to the lack of availability of robust inventory data on forest vegetation and lack
of access to appropriate climate data. In this study, we used our recently developed model, ClimateAP, to
generate a large number of climate variables for point locations and used an ensemble modeling
approach with Random Forest to overcome some limitations that exist with vegetation data.
Uncertainty in future climates was incorporated into the analysis through consensus based projections
using 12 climate change scenarios. We modeled the climatic niches for four economically and ecologi-
cally important forest tree species in the region and projected their shift in geographical distribution
under climate change. Unusual patterns in the shift of geographic distributions of climatic niches were
found in two species in Southern China. The implications of the projections in forest management for
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adaptation to climate change are discussed.
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1. Introduction

Climate is the primary factor regulating geographic distribu-
tions of plant species (Woodward and Williams, 1987; Davis and
Shaw, 2001; McKenney and Pedlar, 2003). Most forest tree species
are adapted to a range of climatic conditions, which is referred to
as their climatic niche (Peterson et al, 1999; Pearson and
Dawson, 2003). Due to the long lifecycle and slow rate of migration
of forest trees, unprecedented rapid climate change will likely
result in a mismatch between the climate that trees are historically
adapted to and the climate that trees will experience in the future
(Aitken et al., 2008). Individuals or populations exposed to climate
conditions outside their climatic niches will likely be maladapted,
resulting in compromised productivity and increased vulnerability
of species to disturbance such as insects and pathogens (Hamann

* This article is part of a special section entitled “Forest Management for Climate
Change”.
* Corresponding author.
E-mail address: tongli.wang@ubc.ca (T. Wang).

http://dx.doi.org/10.1016/j.foreco.2015.08.004
0378-1127/© 2015 Elsevier B.V. All rights reserved.

and Wang, 2006; Kurz et al., 2008; Fettig et al., 2013). Therefore,
understanding the climatic niches of forest tree species and pro-
jecting their potential shift in spatial distributions for the future
are important to assess the vulnerability of tree species and to
develop adaptive forest resources management strategies under a
rapidly changing climate, including assistant migration (Huntley
et al., 2010; Alfaro et al., 2014; Rehfeldt et al., 2014a).

Climatic niches can be defined as constituting the climatic com-
ponent of Hutchinson’s (1957) fundamental niche (Pearson and
Dawson, 2003). As they are often built based on the observed dis-
tribution of the target species, these models thus reflect a realized
climatic niche (i.e., resulting from climatic and biotic constraints,
such as interspecific competition) (Pearson and Dawson, 2003;
Holt, 2009) as opposed to the fundamental niche (i.e., solely based
on the species’ environmental requirements) (Hutchinson, 1957).
As models of this form involves biological and ecological compo-
nents, thus they are typically referred to as climatic niche models,
bioclimatic envelope models or ecological niche models. We used
these terms interchangeably in this study.
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The volume of literature using climatic niche models has been
rapidly growing in recent years, while debate about the usefulness
of the approach has also followed. A recent review suggests that
the criticism has often been misplaced in regard to the objectives
of the climatic niche models (Araujo and Peterson, 2012). A cli-
matic niche model defines and predicts the suitable climatic habi-
tat rather than the actual distribution of a species, which involves a
series of evolutionary and ecological processes (Aitken et al., 2008).
Therefore, a climatic niche model is technically not a species distri-
bution model (SDM) but a habitat suitability model (Keith et al.,
2008; Anderson et al., 2009). Confusion between these two kinds
of models has led to unrealistic expectations about the outcomes
from climatic niche models (Araujo and Peterson, 2012). As a
result, many now feel that these so-called SDMs cannot meet users’
expectation in adaptation decision making or species conservation
strategies (Keenan, 2015).

The distribution and potential shift of climatically suitable habi-
tats are the target of many ecosystem management activities. This
information allows users to assess the vulnerability and climate
change impact for species or ecosystems for adaptation and conser-
vation (Schueler et al., 2014; Keenan, 2015). Bioclimatic envelope
models are reasonably suited for informing species selection and
assisted migration in reforestation or afforestation (McLane and
Aitken, 2012; Gray and Hamann, 2013; Alfaro et al., 2014). Using
the species that best match both current and future climates, regen-
erating stands will have a better chance of remaining healthy, pro-
ductive and able to maximize their ecological and/or economic
value under a changing climate. This is particularly important given
the stated policy aim of planting 20 million hectares of forests in the
Asia Pacific over the coming years (Rozelle et al., 2000). Climatic
niche models, if properly established and interpreted, can provide
valuable, first-order assessments of the potential impacts of climate
change and provide a scientific basis for developing adaptive strate-
gies in forest management (Huntley et al., 2010; Fettig et al., 2013;
Alfaro et al., 2014; Rehfeldt et al., 2014b).

Bioclimatic envelope models have widely been used in North
America (Hamann and Wang, 2006; Rehfeldt et al., 2006;
McKenney et al., 2007; Wang et al., 2012a) and Europe (Araujo
and New, 2007; Buisson et al., 2010; Lindner et al., 2014).
However, related studies in Asia Pacific are lagging behind. This
is partially due to the lack of vegetation data and limited access
to high quality climate data and to a large number of projections
for future climates. In this study, we chose three major forest tree
species in China including Chinese fir (Cunninghamia lanceolata
(Lamb.) Hook), Masson Pine (Pinus massoniana) and Chinese pine
(Pinus tabuliformis Carr.). We also chose a major plantation tree
species in Australia, blue gum (Eucalyptus globulus Labill.).
Chinese fir and Masson pine are the two most important subtrop-
ical coniferous species in China. Chinese fir occupies about 30% of
all plantations in China accounts 25% of China’s national commer-
cial timber production, thus it plays a major role in environment,
timber supply, and human society (FAO, 2006). Chinese pine is
the most widely distributed conifer in North China, with a natural
range that stretches from northeastern to northwestern China,
between latitudes 31°00’ and 44°00'N and longitudes 101°30’
and 124°25E (Xu, 1993). Within this range it grows as discrete
populations in mountain areas at elevations from 100 to 2700 m
(Xu et al., 1993). Blue gum, an evergreen broadleaved tree species,
is one of the most widely cultivated trees native to Australia
(Booth, 2013). It has four subspecies distributed across southeast
Australia. The main objectives of our study is to (1) develop cli-
matic niche models for each of the four major forest tree species
in the Asia Pacific considering the limitation of vegetation data;
(2) identify climate variables that are important in determining
the climatic niche for each species; and (3) project climatic niches
for future periods addressing the uncertainty in future climates.

2. Data and methods
2.1. Vegetation data

Presence-absence observations for Chinese fir, Masson pine and
Chinese pine were obtained from the digital version of Vegetation
Map of China (1:1000,000) provided by “Environmental &
Ecological Science Data Center for West China, National Natural
Science Foundation of China” (link: http://westdc.westgis.ac.cn).
A shape file of the distribution for each species was generated from
polygons with the species present. The shape file was then raster-
ized at the spatial resolution of 0.008333 arc min (approximately
1 km). Each data point (i.e., a raster pixel) within a polygon of pres-
ence was assigned as presence of the species. Similarly, a data
point within a polygon of absence was assigned as absence within
the range of the species distribution and expanded by 200 km in
each of the four directions if possible following Barbet-Massin
et al. (2012). Due to a long history of anthropogenic disturbances
to forests in China the current distributions of the species are likely
to be underestimated. Thus, some of the absence data points were
assumed to be false absences. An adjustment was applied to our
modeling process to address this consideration (see below).

For blue gum, 7, 172 presence observations were obtained from
the Atlas of Living Australia (Atlas) (http://www.ala.org.au). These
observations were aggregated from a wide range of data providers
including museums, herbaria, community groups, government
departments, individuals and universities. As there were no
absences demarcated in the observations, pseudo-absence data
points (Elith and Leathwick, 2007; Barbet-Massin et al., 2012) were
generated with the following steps: (1) generation of grid locations
at the spatial resolution of 0.008333 arc min for areas within the
range of the species distribution and extended by 200 km in each
of the four directions if possible; (2) randomly sampling 50,000
pseudo-absence data points from the grid locations; and (3) elim-
ination of false-absence data points in the modeling process as
described below. After the presence-absence datasets were con-
structed, the elevation for each data point was extracted, based
on its geographic coordinates, from a 90 x 90 m digital elevation
model (DEM) obtained from the Shuttle Radar Topography
Mission (SRTM). The latitude, longitude and elevation of the data-
sets were then used to extract climate data.

2.2. Climate data

The availability of a climate data for the Asia Pacific was
achieved through the development of a high-resolution climate
model, ClimateAP. This model was used to generate climate data
across the region. ClimateAP is a climate data downscaling tool
developed for the Asia-Pacific region using the same downscaling
algorithms used in ClimateWNA (Wang et al., 2012b) which
extracts and downscales PRISM (Daly et al., 2008) and WorldClim
(Hijmans et al., 2005) 1961-1990 monthly normal data (2.5 x 2.5
arcmin) to produce seasonal and annual climate variables for
specific locations (scale-free) based on latitude, longitude and ele-
vation. The program uses the scale-free data as a baseline, in com-
bination with monthly anomaly data (relative to the 1961-1990
normals) from IPCC AR5 general circulation models (GCMs) to cal-
culate and downscale (i.e., a delta downscaling approach) monthly,
seasonal and annual climate variables for future periods. The out-
put of the program includes both directly calculated and derived
climate variables. For this study, we generated 66 annual and sea-
sonal climate variables for the point locations with presence and
absence of the species for the reference normal period 1961-
1990. Monthly climate variables were not considered due to the
large number of annual and seasonal climate variables. For the
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predictions and projections of the geographic distribution of each
species for the reference period (1961-1990 normal) and three
future periods (2020s, 2050s and 2080s), gridded climate data
were generated at the spatial resolution of 4 x 4 km for each of
these periods for China and Australia. For future projections, the
gridded climate data were generated for 12 climate change scenar-
ios including six AR5 GCMs and 2 emission scenarios (RCP4.5 and
RCP8.5) (Taylor et al., 2012). The six GCMs include: ACCESS1-3,

BCC-CSM1, CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, and
HadGEM2-ES (http://cmip-pcmdi.llnl.gov/cmip5/availability.
html).

2.3. Statistical analysis

We used the R version Liaw and Wiener (2002) of Breiman
(2001) of the Random Forests (RF) algorithm to model relation-
ships between climate variables for the reference period and the
presence and absence of each of the four species. RF produces
many classification trees, collectively called a ‘forest’, and aggre-
gates the results over all trees. Each of these decision trees in the
forest is constructed using a bootstrap sample of the input data
(i.e., a random sample with replacement) so that the resulting
dataset (‘bagged sample’) contains about 64% of the original obser-
vations, and the remaining observations comprise the ‘out-of-bag’
(OOB) sample. Using the trees grown from a bootstrap sample,
each of the independent observations in the OOB sample is classi-
fied (assigned to either presence or absence) and a model predic-
tion error, called the OOB error (% of incorrectly classed
observations), is calculated. RF is designed for overcoming
collinearity and over-fitting problems (Breiman, 2001; Dormann
et al.,, 2013) and considered as one of the most credible statistical
methods for climatic niche model building (Rehfeldt et al., 2006;
Elith et al., 2008; Wang et al., 2012a).

RF works best if the samples are relatively balanced between
classes (Breiman, 2001; Rehfeldt et al., 2006; Barbet-Massin
et al., 2012). Our sample data were unbalanced with the number
of locations for absence much greater than that for presence. One
way to balance the samples was to randomly sample the data
points for absence to match the number of samples for presence.
However, this can lead to a poor representation of the areas for
the absence of the species. We applied a multiple “forests”
approach to build an ensemble of RF models; each RF model was
built with randomly sampled data points for absence while the
data points for presence remained the same. The final prediction
was based on the ensemble of the 10 individual model predictions.
This also is a recommended method when using machine-learning
based modeling approaches (Barbet-Massin et al., 2012).

To remove the false-absence samples from the absence data
points for the three species in China, we eliminated absence sam-
ples with an absence probability of less than 0.20 in each RF model,
which removed about 10% of the absence data points. To maintain
the balance in sample size between presence and absence, 10%
more absence samples were taken at the initial sampling step as
mentioned above. The same approach was also used to eliminate
the false-absence samples from the pseudo-absence data points

Table 1

for blue gum in Australia. However, we increased the threshold
probability from 0.20 to 0.25 based on the assumption that there
were more false-absence samples in the pseudo-absence data.
This also removed about 10% of the pseudo-absence samples.

RF generates importance values for each of the predictors. We
used the importance values to optimize the model and to identify
the climate variables that were important for determining the cli-
matic niche of each species. All 66 climate variables were included
in the initial RF model. The least important climate variables were
iteratively removed until only two climate variables remained in
the model (i.e., the least possible number of predictors for RF). By
comparing the accuracies of different RF models composed of a dif-
ferent number of climate variables the best RF model was identi-
fied and selected. The final RF models were therefore built using
the optimal combination of climate variables for each of the four
species.

The models were also optimized for the number of trees in each
forest and the number of predictors selected at each node. We used
300 trees, which was more than adequate, for all species. The effect
of the number of predictors selected at each node was minor, so we
used the default square-root of the number of climate variables
(Breiman, 2001).

The final RF models were then fed with climate variables for the
gridded data points to generate spatial distributions of the climatic
niche for each species for the reference period (1961-1990 normal
period) and future periods (2020s, 2050s and 2080s). For the refer-
ence period, the ensemble predictions for presence of a species
were determined from 10 forests generated for each gridded pixel.
For future periods, the frequency was calculated at two levels; the
first was among the 10 forests and the second was among the 12
climate change scenarios. We set it as “presence” if the number
of predictions for presence was equal or larger than five (i.e.,
50%), so that we only needed to count predictions for “presence”
among the climate change scenarios to determine the consensus
of the projections. Since blue gum was modeled at the subspecies
level, we could not count the frequency for multiple categories.
Instead, we used the mode of predictions as the final outputs.
The final outputs were then imported into ArcGIS (v10.2.1) to gen-
erate maps.

3. Results
3.1. Climatic niches of the species and important climate variables

The overall accuracies of the models were high (>90%) for all
species modeled (Table 1). The climatic niche for each species in
terms of the most commonly used climatic variables (mean annual
temperature and precipitation) were defined by the models
(Table 1). The OOB error rate was higher for absence than for pres-
ence except for blue gum. This was expected as the sampling rate
for absences was much smaller for blue gum which in turn affects
the error rate.

Through the removal of the least important climate variables
from the RF model each time, we identified the best combination
of climate variables for the RF model for each species. The change

Model error rates and major climate profiles for the climatic niches of the four major forest tree species.

Species Model error rate (%) Mean annual temperature (°C) Mean annual precipitation (mm)
Presence Absence Overall

Chinese fir 5.4 11.8 8.6 16.9 (9.2-22.6) 1637 (834-3062)

Masson pine 3.0 9.7 6.4 17.6 (6.4-23.5) 1553 (650-3199)

Chinese pine 7.1 12.4 9.8 7.3 (0.4-14.7) 620 (228-1122)

Blue gum 9.7 6.8 8.1 12.0 (4.6-18.4) 887 (455-2928)
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Fig. 1. Changes in error rate of RF model prediction for out-of-box (OOB) samples
with the least importance climate variable removed step by step.

in the OOB error rate with various number of climate variables is
illustrated for Chinese fir in Fig. 1. The level of the change was
not substantial when the number of climate variables was greater
than 20. The 10 most important climate variables for each species
are listed in Table 2.

The ensemble predictions of the geographic distribution of the
climatic niche for each species are illustrated in
Figs. 2a, 3a, 4a and 5a. The predictions of the 10 RF models using
random samples for absence agreed for vast majority of the areas,
while the disagreement only occurred at margins of the climatic
niches for all the four species. The predicted geographic distribu-
tion of each species climatic niche was larger but congruent with
its current distribution. This was particularly the case for Chinese
fir.

3.2. Consensus projections of the geographic distribution of the
climatic niches for future periods

Consensus based projections of the future geographic distribu-
tion of the climatic niches among the four species shared some
common features (Figs. 2-5). The projections were highly consis-
tent among the 12 different climate change scenarios for the
2020s, suggesting that the uncertainty in projections of the change
in species geographic distribution is relatively low for the near
future. However, the consistency declined in the 2050s and

2080s scenarios. Another common feature, was the upward shift
in elevation of the projected distribution for each species. The mag-
nitude of the shift was substantial (up to 1100 m by the 2050s).
Interestingly, no clear shift in latitude was projected as commonly
expected for species with the exception of blue gum, which
showed a slight southward shift. The size of the climatic niches
were projected to contract for most of the species (3 out of 4)
and ranged between 24% and 34% by the 2050s.

For Chinese fir and Masson pine, contractions along the trailing
edge of their climatic niches were projected (Figs. 2 and 3).
Surprisingly, the expansion of their climatic niche along the lead-
ing edges was not predicted. For Chinese pine (Fig. 4), the expan-
sion of its climatic niche was substantial (47% by the 2050s)
(Table 3). Interestingly, the expansion was predicted to occur west-
ward instead of northward. For blue gum, the projected shift under
future climates was southward towards the edge of the continent,
resulting in a considerable contraction of its geographic distribu-
tion (—24% by the 2050s) (Fig. 5 and Table 3). Projected changes
in the area of the climatic niches varied considerably among sub-
species (Table 4). The distribution of the climatic niche of E. globu-
lus ssp. pseudoglobulus was projected to nearly disappear by 2050s.
In contrast, the size of projected climatic niche for E. globulus ssp.
globulus remained almost the same. The contraction for E. globulus
ssp. bicostata was also substantial (—50%).

4. Discussion
4.1. Climatic niches of the species

Our results suggest that the climatic niches of the major forest
species in the Asia-Pacific region can be modeled with a combina-
tion of climate variables at an accuracy consistent with other
regions (Rehfeldt et al., 2006; Gray et al., 2011; Rehfeldt et al,,
2014a). The application of following approaches in this study con-
tributed to the low error rates observed in the climatic niche mod-
els for the four tree species. These approaches included: (1) the
removal of false-absence samples; (2) the optimization of the com-
bination of climate variables; and (3) the use of multiple forests to
address the issue of an unbalanced dataset. The developed climatic
niche models thereby produced credible predictions of the current
geographic distributions for four important tree species in the Asia
Pacific (Figs. 2a, 3a, 4a, and 5a). The predicted distribution of the
climatic niche included both the areas where the species are cur-
rently occupied and areas where the climatic conditions are suit-
able for the species, but where they may not be present due to
various factors including physical barriers, adaptational lag and/
or human interference. The models do not consider the role of soil

Table 2

The 10 most important climate variables for each of the four forest species based on the importance values (Imp. value) generated from the Random Forest models.
Chinese fir Masson pine Chinese pine Blue gum
Climate variable Imp. value Climate variable Imp. value Climate variable Imp. value Climate variable Imp. value
PPT_MAM* 40.6 TD 33.8 CMD_JJA 399 PPT_DJF 41.1
TD 35.6 PPT_MAM 32.8 PPT_JJA 37.8 Eref MAM 321
Tmin_JJA 34.6 CMD_DJF 31.4 Tmin_JJA 32.6 PPT_JJA 39.3
PPT_SON 30.4 PPT_JJA 26.9 TD 31.1 Eref_JJA 26.6
Tmin_DJF 29.6 PPT_DJF 229 DD5_SON 254 TD 30.7
Eref MAM 29.1 DD5_JJA 222 MAP 24.0 CMD_DJF 27.7
PPT_JJA 28.9 Tmax_MAM 22.0 MWMT 23.8 DD5_DJF 26.6
CMD_SON 27.8 CMD_SON 20.5 CMD_SON 23.7 EXT 28.7
Tmin_SON 27.7 Eref_JJA 19.8 DD5_JJA 23.1 PPT_SON 26.5
DD5_JJA 276 Tmin_JJA 19.2 CMD 22.8 Tmin_MAM 275

2 PPT = precipitation; Tmin = mean minimum temperature; Tmax = mean maximum temperature; MAP = mean annual precipitation; EXT = extreme maximum tempera-
ture over 30 years; Eref=Hargreaves reference evaporation; CMD = Hargreaves climatic moisture deficit; MWMT = mean warmest month temperature; MCMT = mean
coldest month temperature; TD = the difference between MWMT and MCMT, also referred to as continentality; DD5 = degree-days above 5 °C, growing degree-days;
MAM = March-May; JJA = June-August; SON = September-November; DJF = December-February.
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Fig. 2. Geographic distributions of current and potential climatic niches for Chinese fir based on ensemble predictions for the current (1961-1990) and consensus projections

for the three future periods 2020s, 2050s and 2080s.

properties and the incidences of disease, insects or fire regimes
that may limit a species occurrence/expansion into climatically
suitable areas.

4.2. Consensus projections for the future

Uncertainty in future climate is probably the greatest challenge
in assessment of the impact of climate change on forest ecosystems
and tree species and therefore in developing adaptive strategies in
forest management for the future. There are four greenhouse gas
emission scenarios and over 20 general circulation models
(GCMs) in the latest IPCC report (IPCC, 2014). For a given period,
there are over 80 (4 scenarios x 20 GCMs climate change scenar-
ios) different projections of climate conditions. From a modeler’s
point of view, projections for a large number of climate change sce-
narios are resource demanding and time consuming as the spatial
datasets are usually huge. Therefore, most of the future projections
involve only a small number of climate change scenarios. Some
studies used ensembles by averaging over GCMs or emission sce-
narios. However, such ensembles may cancel out the spatial and
seasonal patterns of specific GCMs as discussed in Wang et al.
(2012a). From a practitioner’s point of view, the large range of sce-
narios makes it almost impossible to develop multiple adaptive
options to accommodate a range of potential futures. Consensus
projections that aggregate multiple individual projections provide
an effective option for practical applications (Wang et al., 2012a).
We believe that the consensus projections provide a solid basis
for the assessment of climate change impacts on species and for

the development of adaptive strategies in forest resources manage-
ment under a changing climate. Specific characteristics of the con-
sensus projections for each species are described below.

4.3. Chinese fir

Our results suggest that the geographic distribution for Chinese
fir may substantially contract under predicted climate change. The
contraction in its current distribution, particularly in the south,
was not a surprise as warmer climate conditions are projected to
occur in the southern parts of its current distribution (Fig. 2).
What was a surprise was the lack of a predicted northward shift
for this wide spread species. The northward expansion of trees in
response to climate change is commonly predicted in other studies
(Hamann and Wang, 2006; McKenney et al., 2007; Rehfeldt et al.,
2014a). The limited northward expansion is likely attributable to
the spatial pattern of precipitation in China. Current species distri-
bution and its predicted current climatic niche occur in areas with
a mean annual precipitation (MAP) above 830 mm. Under future
climates, the geographic distribution of temperatures suitable for
this species is projected to move northward; however, the geo-
graphic distribution of mean annual precipitation is projected to
remain about the same as for the reference period (Fig. 6). The
areas with MAP above 830 mm are mostly south of the Yangzi
River. The sharp contrast in precipitation between northern and
southern China appears to play an important role in the direction
of future projections and may limit the northward expansion of
this species. In addition, the new combinations of temperature
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Fig. 3. Geographic distributions of current and potential climatic niches for Masson pine based on ensemble predictions for the current (1961-1990) and consensus

projections for the three future periods 2020s, 2050s and 2080s.

and precipitation may represent some novel climates (Williams
and Jackson, 2007) in the region and impose new challenges to
model predictions.

It is worth noting however that the climatic niche modeled in
this study (or in the vast majority of other studies) is a realized cli-
matic niche. It reflects the climate conditions currently occupied by
the species. Whether or not Chinese fir can grow outside of the cur-
rent climatic niche is unknown and needs to be further explored
through field experiments, such as provenance tests. A recent
study using a process-based model 3-PG (Physiological Principles
to Predict Growth) reported a northward expansion for this spe-
cies, but the projected growth potential was extremely low (Lu
et al., 2015). The limiting factor appeared to be the soil water con-
tent. The findings of Lu et al. (2015) are therefore in agreement
with our realized niche-based projections.

The dramatic decline in the area suitable for Chinese fir pro-
jected in this study is concerning as this species is one of the most
important forest species in China in term of both its economic
value and role in ecosystem functioning (FAO, 2006; Jiang et al.,
2011). Our results should provide an early warning for policy mak-
ers and practitioners to develop adaptive strategies in species
selection and forest management practices in order to adapt the
management of Chinese fir forests/plantations to future climate.
Managing this species within its current geographical distribution
will become increasingly problematic as its current climatic niche
becomes fragmented which may lead to a loss in economic value of
plantations and impair forest ecosystem functioning.

4.4. Masson pine

The climatic niche of Masson pine almost entirely overlaps that
of Chinese fir, but it has a broader range in term of both tempera-
ture and precipitation (Table 1 and Fig. 3). Projected contraction in
its current distributions was much less (—17%) than that of its
counterpart Chinese fir (—34%). Like Chinese fir, Masson pine
exhibited no substantial northward expansion under future cli-
mate conditions. The contraction of its geographic distribution
was projected to mostly occur along the trailing end of its current
distribution in the south of China. This is in contrast to the projec-
tions for Chinese fir, for which a contraction was also projected to
occur in the central areas of its distribution. This is probably attri-
butable to the broader climatic niche of this species compared to
Chinese fir. Masson pine may therefore provide a good alternative
to Chinese fir for reforestation and afforestation under a future cli-
mate in these regions of China.

4.5. Chinese pine

The consensus projections for Chinese pine falls into line with
our expectations of species response to climate change. This spe-
cies’ distribution was modeled to contract along the trailing edges
and expanded along the leading edges of its range. Instead of shift-
ing northward, our projected distribution for this species showed a
westward expansion. This is not a surprise as the topography in
China is characterized by an increase in elevation as one moves
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Fig. 4. Geographic distributions of current and potential climatic niches for Chinese pine based on ensemble predictions for the current (1961-1990) and consensus

projections for the three future periods 2020s, 2050s and 2080s.

from the east to the west. A dramatic increase in elevation
(+1100 m) was projected for the distribution of this species’ cli-
matic niche by the 2050s. The potential distribution of the climatic
niche for this species is projected to increase substantially (~50%).
Chinese pine is a drought tolerant forest tree species with a rela-
tively fast growth rate (Farjon, 2013). Drought is projected to be
more frequent in northern and western China under climate
change (IPCC Fifth report (http://www.ipcc.ch/report/ar5/)).
These trends, together with our projected increase in areas suitable
for Chinese pine, suggest that Chinese pine could play an important
role in afforestation/reforestation in north and western China in
the future. Assisted migration to help the species expand westward
to new locations in the future could be an option in adaptive forest
resource management.

4.6. Blue gum

As a whole species, the geographic distribution of climatic niche
for blue gum is projected to shift southward towards cooler condi-
tions. The shift pole ward will be constrained by the Tasman Sea at
the leading edge and likely result in a contraction of its total distri-
bution under future climates (by 24% in 2050s, Table 3). The level
of the contraction varied considerably among subspecies. The most
impacted subspecies were E. globulus ssp. pseudoglobulus and E.
globulus ssp. bicostata. The climatic niches of these two subspecies
are predicted to almost completely disappear and contract by 50%
by the 2050s, respectively (Table 4). This clearly indicates that

climate change could bring in new challenges in maintaining the
current level of genetic diversity within this species. However, E.
globulus ssp. bicostata is regarded as being better adaptive to
drought than other subspecies (Wang et al., 1988). It will be inter-
esting to observe the response of this subspecies to the impact. In
contrast, the total distribution of the climatic niche for the major
subspecies E. globulus ssp. globulus is projected to exhibit little
change in overall area; however, contraction is predicted to occur
on the mainland with expansion in Tasmania compensating for
this loss.

The contraction in the overall climatic niche of blue gum on the
mainland of southeast Australia could have negative implications
for the productivity and vitality of blue gum plantations into the
future but positive outcomes for plantation and forest managers
in Tasmania. However, the adaptive capacity of eucalypt planta-
tions is considered high with many eucalypts grown on short rota-
tions (<ten years). This provides managers with opportunities to
adapt their silvicultural practices and/or plant different genotypes
or species to match changing climatic conditions with relative ease
(Booth, 2013).

It is important to keep in mind that climatic niche models pre-
dict the realized climatic niche rather than the fundamental cli-
matic niche or the actual distribution of a species. The realized
climatic niche represents a range of climate conditions currently
occupied by a species within its fundamental niche. It is a result
of a long term evolutionary and ecological processes of the species
involving migration, local adaptation and its interactions with
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Table 3
Changes in average latitude, longitude, elevation and areas of climatic niches for each
species by 2050s relative to the reference period 1970s.

Species Latitude (°) Longitude (°) Elevation (m) Area (%)

Chinese fir 0.1 -0.7 244 -34.2

Masson pine 0.4 0.5 61 -17.0

Chinese pine -0.7 -5.6 1129 46.8

Blue gum -1.2 -0.1 3 -24.3
Table 4

Changes in average latitude, longitude, elevation and areas of climatic niches for
subspecies of blue gum by 2050s relative to the reference period 1970s.

Subspecies Latitude (°) Longitude (°) Elevation (m) Area (%)
bicostata —6.8 -9.6 230 —50.7
maidenii -0.9 -0.4 3 -10.9
globulus -0.6 0.3 -1 -14
pseudoglobulus -0.2 -2.1 -224 -99.0

other species and perturbations (Rosenzweig, 1995; Wiens and
Graham, 2005). The process is complicated and remains a chal-
lenge to be fully understood. However, the objective of climatic
niche models is to model a range of climate conditions rather than
to model the process and to predict the actual species distributions
as is done by species distribution models (Elith and Leathwick,
2009). The projected expansion in the geographic distribution of
a species climatic niche at the leading edges of its distribution is

therefore a conservative estimate of its potential distribution based
on climate, not other factors. It provides baseline information to
aid in decision making around assisted migration for a given spe-
cies (Gray et al, 2011; McLane and Aitken, 2012; Gray and
Hamann, 2013). It is up to the forest managers to consider other
factors such as soil and disturbance agents that can constraint
the predicted climatic niche. Compared to a changing climate,
the factors can be static (i.e. soil) and so simple to consider or
stochastic (i.e., insects, disease, fire) and therefore difficult to
consider.

An additional utility of the climatic niche approach is the iden-
tification of areas of a species distribution where they are more
vulnerable to climate change. For example, the predicted changes
at the trailing edge of a species distribution suggests that there
may be populations that will occur outside their climatic niche
which lead to maladaptation. Under these conditions the produc-
tivity, resilience and competitive advantage of a species may be
compromised, which in turn will increase the species vulnerability
to abiotic and biotic disturbances (Fettig et al., 2013; Gray and
Hamann, 2013). Monitoring and genetic conservation (Hamann
and Aitken, 2013) should be a priority for these areas. However,
if these populations are still within their fundamental niches,
which were not modeled, these problems related to their survival
or even productivity may not eventuate.

In this study, the climatic niches of four economically and eco-
logically important tree species in the Asia Pacific were modeled
and their geographic distributions estimated with a high level of
accuracy. This was achieved despite a paucity of vegetation and
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climate data highlighting that the methodology developed for this
study is robust and useful for assessing the impacts of climate
change on forests in other regions of the Asia Pacific where similar
data issues exist. Understanding how the climatic niches and
future distributions of these tree species may change should be
useful for informing managers undertaking afforestation and
ecosystem restoration in the studied regions. The consensus based
projection approach for aggregating multiple climate change pro-
jections in this study provides a solid basis for the assessment of
climate change impact on tree species and for developing adaptive
strategies around species selection in consideration of the uncer-
tainty of future climates.
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